Showing posts with label 4. Innovative Mobile Learning Technologies: Facilitating Just-in-Time Learning. Show all posts
Showing posts with label 4. Innovative Mobile Learning Technologies: Facilitating Just-in-Time Learning. Show all posts

Tuesday, March 26, 2024

5. Immersive AR, VR, and XR Environments: Facilitating Context-Based Learning and Education

 

Innovative Augmented Reality (AR), Virtual Reality (VR), and Extended Reality (XR) immersive technologies provide unparalleled opportunities to develop insightful context-based knowledge and skills when integrated into personal digital learning hubs. Available to the public since the 1980s and 1990s (Elmqaddem, 2019), these are Web2.0 era technologies that provide simulated real-world interactive scenarios and engaging immersive practice environments. Among adults, immersive technologies are increasingly being adopted and used for learning and work, and by 2030, 23 million jobs are projected to require their utilization (Wong & Humayoun, 2022). The appeal of these technologies originates with their ability to integrate both physical and virtual immersive interactive environments.  Employing approaches aligned with both constructivist (Vygotsky, 1978) and experiential learning (Dewey, 1938), users experience a sense of context awareness (Shoikova et al., 2017) as they experiment, manipulate objects, and make discoveries that construct knowledge and aid their understanding.

 

With the availability of Web3.0, these immersive technologies allow learners to be absorbed in self-contained artificial or simulated practice environments while experiencing them as real. Supported by integrated systems of devices that engage a user’s senses, immersive environments can present both learners and workers with rich, varied, and complex learning content while also assisting them in sharpening their technical, creative, and problem-solving skills. However, the types of virtual learning environments differ regarding the degree of immersion provided or the number and form of technical features needed (Rauschnabel et al., 2022).

 

Web2.5 Virtual Reality (VR)

Web2.0, virtual reality (VR) is like the experience of exploring the wonders of the ocean with others by visiting aquarium exhibitions siloed in Plexiglas-encased ocean environments. The outside world is shut out as you view a world under the sea with assorted varieties of fish, whales, sharks, stingrays, etc.  In contrast, VR systems integrated with Web3.0 technologies provide an interactive, more personalized, and dynamically changing viewing arrangement. In these environments, the spectators can interact with the creatures of the sea, creating a more optimized, immersive, and engaging experience. However, lacking the securities of blockchain technology, non-fungible tokens (NFTs), and other Web3.0 technologies, most VR educational and learning experiences today are akin to Web2.5.

 

Web2.5 VR systems require several integrated technologies to experience realistic images, sounds, and other sensations while fully immersed in a digital environment (Fernandes et al., 2023). Head-mounted displays (HMDs), like the Meta Quest 2, are needed to access a computer. A variety of sensors are available to experience touch (e.g., sensor gloves), track body movements (e.g., Omni One), or capture hand movements (e.g., Leap Motion). Therefore, the Web2.5 version of Virtual Reality is like a deep-sea diving expedition. Through software-generated realistic images, sounds, and other sensations, users are fully submerged in an ocean environment as they interact with whales, sharks, stingrays, porpoises, plants, currents, and other features. These contextualized interactive features appeal to training and education in diverse practice fields such as the military, medicine, and architecture.

 

Educational and training organizations are leveraging the benefits of VR for instructing learners in new, complex topics, and/or dangerous and unusual contexts:

  1. Specialized virtual education and training environments have been designed to mimic high-risk and complicated practice settings, e.g., airplane cockpits, assorted military battlefields, chemical laboratories, and so on. After gaining theoretical knowledge, these context-based environments can be used to assist learners in sharpening their technical, creative, and problem-solving skills by applying their acquired knowledge to complete challenging tasks (Kamińska et al., 2019). Learners can safely simulate practice in highly complex, stressful, and potentially dangerous virtual environments, such as aviation flight training scenarios, military training exercises, and clinical practice interventions (Rizzo, 2013).
  2. Mobile immersive classroom equipment allows educators and trainers to bring affordable, innovative virtual reality lessons into conventional classroom settings. For example, the mobile ClassVR unit connects to a portal (containing curriculum-linked 3-D virtual content, activities, and lessons) to teach practical skills following previously acquired knowledge (Kamińska et al., 2019). The unit provides standalone portable storage, sets of virtual reality headsets, wired hand-held controllers, and a portable charging station.
  3. Specialized smart immersive classrooms use a Learning Management System of Virtual Context (LMSVC) to generate 3-D artificial virtual classroom displays of contemporary knowledge in a particular field and support the acquisition of theoretical knowledge such as terminology, dates, and scientific theories (Kamińska et al., 2019). Touch interactions allow learners to immerse themselves in virtual content using wireless sensors, haptics, and wearables (Memos et al., 2020). Augmented Reality learning opportunities are also viable options for educators and trainers.

 

Web2.5 Augmented Reality (AR)

Educators and trainers primarily use Augmented Reality (AR) as supplementary tools to promote students’ interactive experiences with coursework, encourage collaboration between students, improve motivation, and increase learning gains (Loveless, 2023). Through Web2.5 technologies, AR applications bring the virtual world into our own. It is like having a personalized underwater aquatic experience wherever you go, with digital elements from the ocean seamlessly integrated into your real-world environment (e.g., a shark on a loan company logo, or a sting-ray on a car) providing real-time information and creating new layers of interaction. By overlaying computer-generated augmentations on top of the real world, AR enhances (but does not replace) reality.

 

Educators are increasingly providing access to AR simulations in classroom and training situations. Some examples include:

  1. Commercially available AR apps like Snapchat, Google Lens, and Math Solver can be paired with smartphones. These applications can enhance learning by blending digital components into the real world to enhance one another but remain easily distinguishable. For example,  Mondly provides 3-D language learning through a virtual teacher. It assists learners to practice their language skills seamlessly and interactively in various context-based settings such as coffee shops, and vacation travel.  
  2. Smartphones can be paired with VR headsets (such as Oculus Quest 2) to access app-based 3-D immersive content (such as Unimersiv and Google Earth VR) (Bookwidgets Blog, 2021). 
  3. Digital knowledge-sharing platforms (such as JigSpace) are centralized hubs for creating, storing, and sharing information via AR smartphone applications, which can be accessed by students, participants, and trainees.

 

While AR applications can be highly creative and insightful, the immersive learning experiences they provide pales in comparison to the promise of learning in the Metaverse.


Web3.0 Extended Reality (XR) and the Metaverse

Still under construction, the Metaverse offers a futuristic vision for Web3.0 immersive Extended Reality (XR) learning and training applications, which will increasingly shape the way people teach and learn in the modern world (Sutikno & Aisyahrani, 2023). Extended Reality applications allow learners to explore virtual environments, manipulate digital objects, collaborate with peers in remote locations, and engage in hands-on simulations that enhance understanding and retention of complex concepts. Learning in the Metaverse is like being submerged within a constantly evolving and interactive deep-sea experience where the physical and digital worlds seamlessly blend, allowing for deeper engagement, real-time collaboration, and experiential learning that breaks boundaries between traditional and digital spaces.

 

The emergent metaverse contains many self-sustaining synthetic digital worlds. Like a digital Oklahoma land rush, individuals and organizations aggressively use cryptocurrencies and blockchain transactions to purchase and secure ownership of expensive, commercially available tracts of digital space to create specialized worlds. Each world is comprised of user-controlled avatars, digital things, and 3D immersive virtual environments (e.g., university campuses, classrooms, conferences, workshops, libraries, and other computer-generated elements (Wang et al., 2022). For example, VictoryXR partners with over 20 higher education institutions to develop digital twin replicas of their campuses and provide various interactive courses in the Metaverse. Similarly, education and training investments in the metaverse can secure the provision of interactive, collaborative, personalized, safe, and adaptive learning experiences for high-risk training scenarios across geographical barriers (Srivastava, 2023). Using mixed reality Head-Mounted Display (HMD) devices, such as Microsoft's HoloLens or Apple Vision Pro in real time, adult learners (represented by avatars) can see and interact with virtual objects integrated into the real world while also being aware of, and interacting with, the physical environment as they tour campuses, take classes, attend conferences, participate in workshops, complete assignments, collaborate, and socialize with each other (Wang et al., 2022).

 

Selecting Immersive Learning Experiences

My reading of the digital tea leaves suggests your future as an adult learner will likely involve knowing how to use immersive technologies for education and training. Each application discussed in this Blog provides distinct advantages you should consider adding to your digital learning hub. However, creating functional applications can be expensive, and some people may experience discomfort when using connective devices. Also, creating digital twins of yourself in the Metaverse could create identity theft concerns as your digital twin includes your personal information. You should experiment with different immersive learning applications to ensure they are safe, secure, affordable, maintainable, and easy to use.

 

Up Next: The Internet of Things and Wearables

In my next blog post, I will analyze the contributions the Internet of Things and Wearables are making to learning and which of these should be considered for adult learners’ digital toolkits. 


 

Larry G. Martin, Ph.D.
Professor Emeritus, UWM
Follow me on X (formerly twitter) https://twitter.com/larry_martin29 and LinkedIn https://www.linkedin.com/in/larry-martin-142b528/

 

 

References

Beck, D., Morgado, L., & O'Shea, P. (2020). Finding the gaps about uses of immersive learning environments: a survey of surveys. Journal of Universal Computer Science26, 1043-1073.

Bookwidgets Blog, (2021). 20 Powerful virtual reality apps for your classroom of the future. https://www.bookwidgets.com/blog/2021/01/20-powerful-virtual-reality-apps-for-your-classroom-of-the-future (Downloaded 1/12/2023).

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., ... & Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.

Dewey, J. (1938). Experience and education. New York, NY: Macmillan.

Elmqaddem, N. (2019). Augmented reality and virtual reality in education. Myth or reality?. International journal of emerging technologies in learning14(3).

Fernandes, F. A., Rodrigues, C. S. C., Teixeira, E. N., & Werner, C. (2023). Immersive Learning Frameworks: A Systematic Literature Review. IEEE Transactions on Learning Technologies.

Kamińska, D., Sapiński, T., Wiak, S., Tikk, T., Haamer, R. E., Avots, E., ... & Anbarjafari, G. (2019). Virtual reality and its applications in education: Survey. Information10(10), 318.

Loveless, B (2023). Using Augmented Reality in the Classroom. https://www.educationcorner.com/augmented-reality-classroom-education.html (Downloaded, 1-23-2023)

Rauschnabel, P.A., He, J., Ro, Y. K. (2019). Antecedents to the adoption of augmented reality smart glasses: a closer look at privacy risks. Journal of Business Research, 92, pp. 374–384.

Rizzo, A., John, B., Newman, B., Williams, J., Hartholt, A., Lethin, C., & Buckwalter, J. G. (2013). Virtual reality as a tool for delivering PTSD exposure therapy and stress resilience training. Military Behavioral Health1(1), 52-58.

Srivastava, S. (2023). Metaverse in Training: Top 7 Use Cases and Benefits. https://appinventiv.com/blog/metaverse-in-training/

Sutikno, T., & Aisyahrani, A. I. B. (2023). Non-fungible tokens, decentralized autonomous organizations, Web 3.0, and the metaverse in education: From university to metaversity. Journal of Education and Learning (EduLearn)17(1), 1-15.

Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Cambridge, MA: Harvard University Press.

Wang, Y., Su, Z., Zhang, N., Xing, R., Liu, D., Luan, T. H., & Shen, X. (2022). A survey on metaverse: Fundamentals, security, and privacy. IEEE Communications Surveys & Tutorials.

Wong, J., & Humayoun, S. R. (2022, August). Expanding Structural Engineering Education through Virtual Reality. In 2022 ASEE Annual Conference & Exposition.

 


Monday, February 12, 2024

4. Innovative Mobile Learning Technologies: Facilitating Just-in-Time Learning

 

 

Adults experiencing situational learning barriers (such as lack of employer support for learning, difficult work schedules, and/or family responsibilities) (Roosmaa & Saar, 2017) should add innovative mobile learning technologies to their digital learning hubs. Through the ubiquitous availability of mobile devices, adults increasingly engage in mobile learning (M-learning) using smartphones and small-screen devices. M-learning enables them to address situational learning barriers by accessing information independently of time and space and managing their own learning processes based on their individual differences (Talan, 2020). Through location-aware mobile devices, learning opportunities are immediately available and personalized to learners’ interests and needs (Bruck et al., 2012). They place students at the center of the teaching and learning process by prioritizing individual differences and helping learners analyze and synthesize information (Talan, 2020). With the widespread use of mobile apps on small-screen devices, new mobile learning opportunities are increasingly available to adults seeking to overcome situational barriers.

 

The Embrace of M-learning

The M-learning apps on mobile computing devices present an exciting new frontier in adult education. They offer flexibility, self-paced learning, access to global knowledge pools, and personalized content to deliver a unique learner-centered education (Talan, 2020). Students’ learning can take place anywhere throughout the day; and focus on work demands, self-improvement, or leisure (Wang et al., 2019). However, adults need access to these technologies to engage in M-learning.

 

Effective M-learning requires three essential elements. First, adults must have access to mobile learning devices (such as small, portable devices equipped with wireless communication abilities, strong computational power, and context-aware tools) (Wang et al., 2019). In 2021, most American adults owned these devices: 85 percent owned smartphones, and 50 percent owned tablets (Pew Research Mobile Factsheet, 2021). Second, adults need access to an appropriate communications infrastructure (such as the Internet) that can connect their mobile computing devices to relevant learning materials and/or other learners (Wang et al., 2019). About 93 percent of American adults use the Internet, and 75% have broadband Internet service at home (Pew Broadband Research, 2021). Third, adults should have access to learning activities, in traditional classrooms, outside the classroom, or in informal learning contexts (Wang et al., 2019). Through ownership of mobile devices and access to the Internet, most American adults can pursue learning activities through mobile learning apps.

 

Web2.5 Mobile Learning Apps       

Historically, mobile apps are Web2.0 tools available since the early 1990s. These legacy apps were like traditional radio stations that broadcasted the same songs or shows to all listeners without personalization. There was no real interaction; everyone received the same information simultaneously and in the same sequence. Similarly, adults could be frustrated using Web2.0 mobile apps. They only allowed learners to receive the same content in the same format and sequence, regardless of their individual learning preferences and needs.

 

Many M-learning apps are now more appealing to busy adults. They are successfully integrating elements of Web3.0 technologies that allow adults to gain online access to interactive learning materials, micro-learning, personalization, simulations, voice and image recognition capabilities, and rich educational games (Damyanov & Tsankov, 2018). These Web2.5-oriented apps are like a streaming service resembling Spotify that provides more highly personalized experiences. Through AI, they understand learner needs and preferences and recommend more personalized, efficient, and engaging learning experiences based on each person’s behavior, preferences, and performance. These empowering capacities have also gained the attention of established educational organizations, as mobile apps are now essential in educational courses (Talan, 2020).  Consequently, the worldwide market for M-learning apps is expected to grow from $7.98 billion U.S. dollars in 2015 to $325 billion by 2025 (Wang et al., 2019). This explosive growth has produced a dizzying array of desktop-first and mobile-first apps available to assist adults in learning a large quantity and variety of content.

 

         Desktop-First Mobile Apps. One way to make sense of mobile apps' confusing number and variety is to categorize them by the devices for which they were originally designed. For example, some desktop-first apps were designed specifically for desktop and laptop computers, allowing learners more extensive, in-depth, and longer learning sessions. Learners can use a mouse, keyboard, and large computer screens to engage a broad range of content for 30 minutes or more. Consequently, most mobile versions of desktop-first apps tend to be retrofitted into more compact mobile designs.

 

Desktop-first mobile apps are often available from a broad range of credit (and non-credit) courses in established education and training organizations supported by Learning Management Systems (such as Blackboard, Canvas, and Moodle). Similarly, these apps are available from digital learning platforms that support many general courses (such as Coursera, Udemy, LinkedIn Learning); literacy courses (such as Learning Upgrade); and language learning courses (such as Rosetta Stone). Many of these are fee-based platforms and typically require enrollment to access their mobile apps. Other platforms, including Khan Academy, TED Talks, and Sololearn, provide free mobile learning apps on various topics and assist learners in developing a wide range of knowledge and skills. These desktop-first mobile apps tend to have more limited functionality than desktop applications; however, they often have Web2.5 features (such as personalization and adaptive learning). A fuller range of Web2.5 mobile learning features is generally more apparent in mobile-first learning apps.

 

Mobile-First Learning Apps. Mobile-first learning apps (such as Babbel and Duolingo ) have been specifically designed for small-screen mobile learning applications but often provide access via desktop and laptop computers. They ensure that the apps are optimized for mobile devices through responsive designs, simplified layouts, and mobile-friendly interactions. Device-specific interactions and capabilities like touch gestures, sensors, and push notifications ensure that mobile-first app users can initiate swipe gestures for navigation, utilize the device camera for augmented reality features, or use push notifications for reminders about upcoming lessons or assignments. Also, location-based features can provide localized learning experiences. This can include location-specific content or recommendations based on the learner's location. Many of these features are integrated into the Duolingo Mobile app.

 

The Duolingo Mobile-First Learning App. The Duolingo mobile-first language learning app illustrates how using Web2.5 technologies can empower learners. It operates under a freemium business model and provides the core services of the app free of charge. Yet, it seamlessly integrates personalization, gamification, and adaptive learning experiences based on a user’s individual abilities, preferences, progress, and learning style (Viktor, 2021; Marr, 2020). Through smart learning environments, the platform uses several innovative approaches to keep learners updated and engaged on the app:

 

·      Intelligent tutoring systems enhance content based on learners' needs, strengths, and weaknesses (Marr, 2020). They provide helpful, personalized feedback, hints, and guidance during learning.

·      Mobile-Based microlearning units optimize the duration, focus, and benefits of learning into bite-sized learning modules, lessons, and short quizzes, that can be completed in a few minutes (Moore et al., 2024).  

·      Spaced repetitions optimize learners’ memories of targeted content by providing scheduled reviews of personalized language lessons over longer intervals (Marr, 2020; Tabibian et al., 2019).

·      Stealth assessment reduces learner anxieties by intentionally blurring the distinction between assessment and learning so that the learner is oblivious to the assessment process (Georgiadis et al., 2020).

 

Notwithstanding these innovative interventions, the Duolingo mobile app does not fully utilize the depth of Web3.0 technologies.

 

Web3.0 Mobile Apps

Fully Web3.0 mobile apps are scarce but still emerging. Nevertheless, one example is the BitDegree platform, which provides a mobile app for learning and exploring knowledge about blockchain technology. The platform offers many courses on cryptocurrencies and provides numerous educational materials to assist learners interested in digital currencies and blockchain technology. It utilizes blockchain tools (such as tokens and certificates) to track learning achievements transparently, award scholarships, and provide incentives.

 

Selecting M-learning Apps

As you consider mobile apps for adoption into your digital learning hub, you should ponder the extent to which you have access to appropriate M-learning tools and the types of apps suitable for your learning needs. Top of mind should be desktop-first and mobile-first Web2.5 learning apps capable of providing relevant learning experiences. Fully Web3.0 mobile apps are still in the development stage. You should be mindful of adopting developmental technology.

 

Up Next: Immersive Learning in Augmented and Virtual Reality Environments

In my next blog post, I analyze the key features of AR and VR environments and the tools that should be considered for adult learners’ digital tool kits. 

 

 

Larry G. Martin, Ph.D.
Professor Emeritus, UWM
Follow me on X (formerly twitter) https://twitter.com/larry_martin29 and LinkedIn https://www.linkedin.com/in/larry-martin-142b528/

 

 

 

References

Bruck, P. A., Motiwalla, L., & Foerster, F. (2012). Mobile learning with micro-content: a framework and evaluation.

Damyanov, I., & Tsankov, N. (2018). Mobile apps in daily learning activities. iJIM12(6).

Georgiadis, K., van Lankveld, G., Bahreini, K., & Westera, W. (2020). On the robustness of stealth assessment. IEEE Transactions on Games13(2), 180-192.

Marr, B. (2020) The Amazing Ways Duolingo Is Using Artificial Intelligence To Deliver Free Language Learning. https://www.forbes.com/sites/bernardmarr/2020/10/16/the-amazing-ways-duolingo-is-using-artificial-intelligence-to-deliver-free-language-learning/?sh=16c276275511

Moore, R. L., Hwang, W., & Moses, J. D. (2024). A systematic review of mobile-based microlearning in adult learner contexts. Educational Technology & Society27(1), 137-146.

Talan, T. (2020). The effect of mobile learning on learning performance: A meta-analysis study. Educational Sciences: Theory and Practice20(1), 79-103.

Roosmaa, E. L., & Saar, E. (2017). Adults who do not want to participate in learning: A cross-national European analysis of their perceived barriers. International Journal of Lifelong Education36(3), 254-277.

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., & Gomez-Rodriguez, M. (2019). Enhancing human learning via spaced repetition optimization. Proceedings of the National Academy of Sciences116(10), 3988-3993.

Viktor (2021). The Duolingo Business Model – How Does Duolingo Make Money? https://productmint.com/duolingo-business-model-how-does-duolingo-make-money/

Wang, Y. Y., Wang, Y. S., Lin, H. H., & Tsai, T. H. (2019). Developing and validating a model for assessing paid mobile learning app success. Interactive learning environments27(4), 458-477.